
Pat O’Sullivan

Mh4718 Week 2

Week 2

0.0.0.1 Scientific Notation. Scientific notation, also known as standard form

or as exponential notation, is a way of writing numbers that accommodates

values too large or small to be conveniently written in standard decimal nota-

tion. Scientific notation has a number of useful properties and is often favored

by scientists, mathematicians and engineers, who work with such numbers.

In scientific notation all numbers are written in the form:

a× 10b

where the exponent b is an integer, and the coefficient a is any real number

(but see normalized notation below), called the significand or mantissa If the

number is negative then a minus sign precedes a (as in ordinary decimal nota-

tion).

Any given number can be written in the form of a10b in many ways; for exam-

ple 350 can be written as 3.5× 102 or 35× 101 or 350× 100

In normalized scientific notation, the exponent b is chosen such that 1 ≤ |a| <
10. For example, 350 is written as 3.5× 102. This form allows easy comparison

of two numbers of the same sign in a, as the exponent b gives the number’s

order of magnitude.

Note that 0 itself cannot be written in normalised scientific notation since the

mantissa would have to be zero and the exponent undefined.

1

2 Mh4718 Numerical Analysis

Ordinary decimal notation Scientific notation (normalized)

300 3× 102

4,000 4× 103

5,720,000,000 5.72× 109

0.0000000061 6.1× 109

Example 0.1

Base ten:

• 2318 = 2.318× 103.

2.318 is the mantissa and 3 is the exponent.

• 0.2318 = 2.318× 10−1

2.318 is the mantissa and -1 is the exponent.

• 0.002318 = 2.318× 10−3

2.318 is the mantissa and -3 is the exponent.

Base two:

• 111.01011 = 1.1101011× 1010.

1.1101011 is the mantissa and 10 is the exponent.

Don’t forget that this is base two representation and so the base and exponent

(denoted as 10) signifies two.

• 0.11101011 = 1.1101011× 10−1.

1.1101011 is the mantissa and -1 is the exponent.

Again this is base two representation and so 10 signifies two.

• 0.0011101011 = 1.1101011× 10−11.

1.1101011 is the mantissa and -11 (that is -3 in base ten) is the exponent.

Note that no matter what base we are using in standardised scientific notaion

the format is always: mantissa×10exponent. The base always appears as 10. For

this reason we frequently use a mixed notation when writing base two floating

point numerals. This is a bit illogical but is actually clearer.

Example 0.2

• If 111.01011 is a base two numeral we sometimes write:

Week 2 3

111.01011 = 1.1101011× 22 instead of 1.1101011× 1010.

• If 0.11101011 is a base two numeral we sometimes write:

0.11101011 = 1.1101011× 2−1 instead of 0.11101011 = 1.1101011× 10−1.

• If 0.0011101011 is a base two numeral we sometimes write:

0.0011101011 = 1.1101011 × 2−3 instead of 0.0011101011 = 1.1101011 ×
10−11.

The easiest way to add two numbers in normalised scientific notation is to

replace the smallest exponent (it the exponents are different) with the largest

exponent and then add the mantissas.

Example 0.3

Base ten:

8.237× 104 + 9.63× 102 = 8.237× 104 + 0.0963× 104

= (8.237 + 0.0963)× 104 = 8.3333× 104

Base two:

1.1011× 10−3 + 1.1101× 102 = 0.0000011011× 102 + 1.1101× 102

= (0.0000011011 + 1.1101)× 102 = 1.1101011011× 102

0.0.1 Significant digits

The significant digits (also called significant figures and abbreviated sig figs,

sign.figs, sig digs or s.f.) of a number are those digits that carry meaning con-

tributing to its precision. This includes all digits except leading and trailing

zeros where they serve merely as placeholders to indicate the scale of the num-

ber.

The concept of significant digits is often used in connection with rounding.

Rounding to n significant digits is a more general-purpose technique than

rounding to n decimal places, since it handles numbers of different scales in

a uniform way. For example, the population of a city might only be known to

4 Mh4718 Numerical Analysis

the nearest thousand and be stated as 52,000, while the population of a coun-

try might only be known to the nearest million and be stated as 52,000,000.

The former might be in error by hundreds, and the latter might be in error

by hundreds of thousands, but both have two significant digits (5 and 2). This

reflects the fact that the significance of the error (its likely size relative to the

size of the quantity being measured) is the same in both cases.

The rules for identifying significant digits when writing or interpreting numbers

are as follows:

• All non-zero digits are considered significant. For example, 91 has two signif-

icant digits (9 and 1), while 123.45 has five significant digits (1, 2, 3, 4 and

5).

• Zeros appearing anywhere between two non-zero digits are significant. Ex-

ample: 101.12 has five significant digits: 1, 0, 1, 1 and 2.

• Leading zeros are not significant. For example, 0.00052 has two significant

digits: 5 and 2.

• Trailing zeros in a number containing a decimal point are significant. For

example, 12.2300 has six significant digits: 1, 2, 2, 3, 0 and 0. The number

0.000122300 still has only six significant digits (the zeros before the 1 are not

significant). In addition, 120.00 has five significant digits. This convention

clarifies the precision of such numbers; for example, if a result accurate to

four decimal places is given as 12.23 then it might be understood that only

two decimal places of accuracy are available. Stating the result as 12.2300

makes clear that it is accurate to four decimal places.

• The significance of trailing zeros in a number not containing a decimal point

can be ambiguous. For example, it may not always be clear if a number like

1300 is accurate to the nearest unit (and just happens coincidentally to be an

exact multiple of a hundred) or if it is only shown to the nearest hundred due

to rounding or uncertainty. Various conventions exist to address this issue:

– A bar may be placed over the last significant digit; any trailing zeros

following this are insignificant. For example, 130̄0 has three significant

digits (and hence indicates that the number is accurate to the nearest

ten).

– The last significant digit of a number may be underlined; for example,

20000 has two significant digits.

– A decimal point may be placed after the number; for example 100. indi-

cates specifically that three significant digits are meant.

How many significant figures do the following numbers have?

Week 2 5

1) 1234 1) 4

2) 0.023 2) 2

3) 890 3) 2

4) 91010 4) 4

5) 9010.0 5) 5

6) 1090.0010 6) 8

7) 0.00120 7) 3

8) 3.4 x 104 8) 2

9) 9.0 x 10-3 9) 2

10) 9.010 x 10-2 10) 4

11) 0.00030 11) 2

12) 1020010 12) 6

13) 780. 13) 3

14) 1000 14) 1

15) 918.010 15) 6

16) 0.0001 16) 1

17) 0.00390 17) 3

18) 8120 18) 3

19) 7.991 x 10-10 19) 4

20) 72 20) 2

6 Mh4718 Numerical Analysis

MSExcel stores 15 significant digits.

Example 0.4

In MSExcel format a cell as a number and enter 2^50.

The value displayed is 1125899906842620.00 and it is clear that this is not

correct since 250 is not divisible by 5.

In fact we can determine that the last digit of 250 is 4.

However, the value displayed is not necessarily the value stored and we can

show this hear by subtracting 1125899906842620.00 from the value in the cell

which holds 250.

We can determine the number of digits in an integer using the log10 function.

(Which we shall denote simply as log from now on.)

Recalling that log(10n) = n and that log is an increasing function we see that,

if x is a number with n digits then

10n−1 ≤ x < 10n ⇒ n− 1 ≤ log(x) < n

therefore the number of digits in x is given by [log(x)]+1 where [log(x)] denotes

the integer part of x.

Applying this to 250 we see that

log(250) = 50 log(2) ≈ 15.0515

which tells us that 250 has 16 digits which is one more than Excel can display.

0.0.2 Bits and Bytes

The reason computers use the base-2 system is because it makes it a lot easier

to implement them with current electronic technology. You could wire up and

build computers that operate in base-10, but they would be much more right

now. On the other hand, base-2 computers are relatively cheap.

The only data that a computer can understand is on and off. But those two

simple commands can be grouped into millions of combinations and it is the

way they are grouped in series that creates complex data.

Week 2 7

The basic unit is called a bit (binary digit). Each bit has an electronic switch,

or gate. If the gate is open the bit is on and electricity can go through. The

computer reads on or open switches as a number 1. If the gate is closed or off,

the electricity is blocked and the computer reads off bits as 0. So computers

use binary numbers, and therefore use binary digits in place of decimal digits.

Bits are rarely seen alone in computers. They are almost always bundled to-

gether into 8-bit collections, and these collections are called bytes. Why are

there 8 bits in a byte? This is similar to the question, “Why are there 12 inches

in a foot?” The 8-bit byte is something that people settled on through trial

and error over the past 50 years. There are 256 possible combinations of 1/0

in a byte.

The abbreviation for bit is a lowercase “b”; the abbreviation for byte is an

uppercase “B”.

Bytes are then grouped together to former larger units of measurements. The

larger units usually involve bundling in powers of two.

The prefixes for the multiples are based on the metric system. The nearest

power of 2 to 1,000 is 210 or 1,024; thus 1,024 bytes was named a Kilobyte. So,

although a metric kilo equals 1,000 (e.g. one kilogram = 1,000 grams), a binary

Kilo equals 1,024 (e.g. one Kilobyte = 1,024 bytes). Not surprisingly, this can

lead to some confusion.

Binary Measurements of Capacity

Unit Abbreviation Value

bit b 0 or 1

byte B 8 bits

Kilobyte KB 1024 bytes

Megabyte MB 1024 Kilobytes

Gigabyte GB 1024 Megabytes

Terabyte TB 1024 Gigabytes

Petabyte PB 1024 Terabytes

Exabyte EB 1024 Petabytes

To make the situation even more confusing, transfer speeds over the Internet are

usually measured in bits rather than bytes and unit groupings revert to decimal.

Notice that lower case letters are used in these cases in order to differentiate

from the binary byte groupings in the above table:

8 Mh4718 Numerical Analysis

Measurements of transfer speeds

Unit Abbreviation Value

bit b 0 or 1

byte B 8 bits

kilobit kb 1000 bits

Megabit Mb 1000 kilobits

Gigabit Gb 1000 Megabits

Terabit Tb 1000 Gigabits

Petabit Pb 1000 Terabits

Exabit Eb 1000 Petabits

In December 1998, the International Electrotechnical Commission (IEC) ap-

proved a new IEC International Standard. Instead of using the metric prefixes

for multiples in binary code, the new IEC standard invented specific prefixes for

binary multiples made up of only the first two letters of the metric prefixes and

adding the first two letters of the word “binary”. Thus, for instance, instead of

Kilobyte (KB) or Gigabyte (GB), the new terms would be kibibyte (KiB) or

gibibyte (GiB).

0.1 Variable Storage in C++

0.1.1 Storage of Integers

Variables of type int are stored using 4 bytes (i.e. 32 bits.) Positive integers

are stored in straightforward base two format.

Example 0.5

If we have the line:

int n=1059;

in a C++ program then the compiler will store the value of n in 4 bytes and,

since 1059 = (10000100011)2, the 4 bytes will be filled as follows:

byte 4︷ ︸︸ ︷
00000000

byte 3︷ ︸︸ ︷
00000000

byte 2︷ ︸︸ ︷
00000100

byte 1︷ ︸︸ ︷
00100011

Week 2 9

0.1.1.1 The largest positive integer that can be stored.

The largest positive integer which can be stored occurs when all bits except the

32nd bit is 1. The 32nd bit must be 0 to indicate that we are storing a positive

integer. Therefore the largest positive integer that can be stored is:

byte 4︷ ︸︸ ︷
01111111

byte 3︷ ︸︸ ︷
11111111

byte 2︷ ︸︸ ︷
11111111

byte 1︷ ︸︸ ︷
11111111 = 230 + 229 + · · ·+ 22 + 21 + 20

Now since
31 ones︷ ︸︸ ︷

111 . . . 111 = 1

31 zeros︷ ︸︸ ︷
000 . . . 000− 1

we see that that the largest int value that can be stored is 231 − 1.

